1218. A cylinder of solid shell-lac, 0.9 of an inch in diameter and seven inches in length, was fixed upright in a wooden foot (fig. 106.): it was made concave or cupped at its upper extremity so that a brass ball or other small arrangement could stand upon it. The upper half of the stem having been excited negatively by friction with warm flannel, a brass ball, B, 1 inch in diameter, was placed on the top, and then the whole arrangement examined by the carrier ball and Coulomb’s electrometer (1180. &c.). For this purpose the balls of the electrometer were charged positively to about 360 deg., and then the carrier being applied to various parts of the ball B, the two were uninsulated whilst in contact or in position, then insulated[A], separated, and the charge of the carrier examined as to its nature and force. Its electricity was always positive, and its force at the different positions a, b, c, d, &c. (figs. 106. and 107.) observed in succession, was as follows:
at a above 1000 deg.
b it was 149
c 270
d 512
b 130
[A] It can hardly be necessary for me to say here, that whatever general state the carrier ball acquired in any place where it was uninsulated and then insulated, it retained on removal from that place, notwithstanding that it might pass through other places that would have given to it, if uninsulated, a different condition.
1219. To comprehend the full force of these results, it must first be understood, that all the charges of the ball B and the carrier are charges by induction, from the action of the excited surface of the shell-lac cylinder; for whatever electricity the ball B received by communication from the shell-lac, either in the first instance or afterwards, was removed by the uninsulating contacts, only that due to induction remaining; and this is shown by the charges taken from the ball in this its uninsulated state being always positive, or of the contrary character to the electricity of the shell-lac. In the next place, the charges at a, c, and d were of such a nature as might be expected from an inductive action in straight lines, but that obtained at b is not so: it is clearly a charge by induction, but induction in a curved line; for the carrier ball whilst applied to b, and after its removal to a distance of six inches or more from B, could not, in consequence of the size of B, be connected by a straight line with any part of the excited and inducing shell-lac.