Experimental Researches in Electricity, Volume 1 eBook

This eBook from the Gutenberg Project consists of approximately 775 pages of information about Experimental Researches in Electricity, Volume 1.

Experimental Researches in Electricity, Volume 1 eBook

This eBook from the Gutenberg Project consists of approximately 775 pages of information about Experimental Researches in Electricity, Volume 1.

117.  When the wire under induction is passing by an electromagnetic pole, as for instance one end of a copper helix traversed by the electric current (34.), the direction of the current in the approaching wire is the same with that of the current in the parts or sides of the spirals nearest to it, and in the receding wire the reverse of that in the parts nearest to it.

118.  All these results show that the power of inducing electric currents is circumferentially exerted by a magnetic resultant or axis of power, just as circumferential magnetism is dependent upon and is exhibited by an electric current.

119.  The experiments described combine to prove that when a piece of metal (and the same may be true of all conducting matter (213.) ) is passed either before a single pole, or between the opposite poles of a magnet, or near electro-magnetic poles, whether ferruginous or not, electrical currents are produced across the metal transverse to the direction of motion; and which therefore, in Arago’s experiments, will approximate towards the direction of radii.  If a single wire be moved like the spoke of a wheel near a magnetic pole, a current of electricity is determined through it from one end towards the other.  If a wheel be imagined, constructed of a great number of these radii, and this revolved near the pole, in the manner of the copper disc (85.), each radius will have a current produced in it as it passes by the pole.  If the radii be supposed to be in contact laterally, a copper disc results, in which the directions of the currents will be generally the same, being modified only by the coaction which can take place between the particles, now that they are in metallic contact.

120.  Now that the existence of these currents is known, Arago’s phenomena may be accounted for without considering them as due to the formation in the copper, of a pole of the opposite kind to that approximated, surrounded by a diffuse polarity of the same kind (82.); neither is it essential that the plate should acquire and lose its state in a finite time; nor on the other hand does it seem necessary that any repulsive force should be admitted as the cause of the rotation (82.).

121.  The effect is precisely of the same kind as the electromagnetic rotations which I had the good fortune to discover some years ago[A].  According to the experiments then made which have since been abundantly confirmed, if a wire (PN fig. 26.) be connected with the positive and negative ends of a voltaic buttery, so that the positive electricity shall pass from P to N, and a marked magnetic pole N be placed near the wire between it and the spectator, the pole will move in a direction tangential to the wire, i.e. towards the right, and the wire will move tangentially towards the left, according to the directions of the arrows.  This is exactly what takes place in the rotation of a plate beneath a magnetic pole; for let N (fig. 27.) be a marked pole above the circular plate, the latter being rotated in the direction of the arrow:  immediately currents of positive electricity set from the central parts in the general direction of the radii by the pole to the parts of the circumference a on the other side of that pole (99. 119.), and are therefore exactly in the same relation to it as the current in the wire (PN, fig. 26.), and therefore the pole in the same manner moves to the right hand.

Copyrights
Project Gutenberg
Experimental Researches in Electricity, Volume 1 from Project Gutenberg. Public domain.