1091. By introducing a galvanometer or decomposing apparatus into the circuit formed by the helix ii, I could easily obtain the deflections and decomposition occasioned by the induced current due to the breaking contact at helix i, or even to that occasioned by making contact of that helix with the electromotor; the results in both cases indicating the contrary directions of the two induced currents thus produced (26.).
1092. All these effects, except those of decomposition, were reproduced by two extended long wires, not having the form of helices, but placed close to each other; and thus it was proved that the extra current could be removed from the wire carrying the original current to a neighbouring wire, and was at the same time identified, in direction and every other respect, with the currents producible by induction (1089.). The case, therefore, of the bright spark and shock on disjunction may now be stated thus: If a current be established in a wire, and another wire, forming a complete circuit, be placed parallel to the first, at the moment the current in the first is stopped it induces a current in the same direction in the second, the first exhibiting then but a feeble spark; but if the second wire be away, disjunction of the first wire induces a current in itself in the same direction, producing a strong spark. The strong spark in the single long wire or helix, at the moment of disjunction, is therefore the equivalent of the current which would be produced in a neighbouring wire if such second current were permitted.
1093. Viewing the phenomena as the results of the induction of electrical currents, many of the principles of action, in the former experiments, become far more evident and precise. Thus the different effects of short wires, long wires, helices, and electro-magnets (1069.) may be comprehended. If the inductive action of a wire a foot long upon a collateral wire also a foot in length, be observed, it will be found very small; but if the same current be sent through a wire fifty feet long, it will induce in a neighbouring wire of fifty feet a far more powerful current at the moment of making or breaking contact, each successive foot of wire adding to the sum of action; and by parity of reasoning, a similar effect should take place when the conducting wire is also that in which the induced current is formed (74.): hence the reason why a long wire gives a brighter spark on breaking contact than a short one (1068.), although it carries much less electricity.
1094. If the long wire be made into a helix, it will then be still more effective in producing sparks and shocks on breaking contact; for by the mutual inductive action of the convolutions each aids its neighbour, and will be aided in turn, and the sum of effect will be very greatly increased.
1095. If an electro-magnet be employed, the effect will be still more highly exalted; because the iron, magnetized by the power of the continuing current, will lose its magnetism at the moment the current ceases to pass, and in so doing will tend to produce an electric current in the wire around it (37. 38.), in conformity with that which the cessation of current in the helix itself also tends to produce.