92. When the conductor was placed on the edge of the disc a little to the right or left, as in the dotted positions fig. 9, the current of electricity was still evolved, and in the same direction as at first (88. 91.). This occurred to a considerable distance, i.e. 50 deg. or 60 deg. on each side of the place of the magnetic poles. The current gathered by the conductor and conveyed to the galvanometer was of the same kind on both sides of the place of greatest intensity, but gradually diminished in force from that place. It appeared to be equally powerful at equal distances from the place of the magnetic poles, not being affected in that respect by the direction of the rotation. When the rotation of the disc was reversed, the direction of the current of electricity was reversed also; but the other circumstances were not affected.
93. On raising the plate, so that the magnetic poles were entirely hidden from each other by its intervention, (a. fig. 10,) the same effects were produced in the same order, and with equal intensity as before. On raising it still higher, so as to bring the place of the poles to c, still the effects were produced, and apparently with as much power as at first.
94. When the conductor was held against the edge as if fixed to it, and with it moved between the poles, even though but for a few degrees, the galvanometer needle moved and indicated a current of electricity, the same as that which would have been produced if the wheel had revolved in the same direction, the conductor remaining stationary.
95. When the galvanometer connexion with the axis was broken, and its wires made fast to two conductors, both applied to the edge of the copper disc, then currents of electricity were produced, presenting more complicated appearances, but in perfect harmony with the above results. Thus, if applied as in fig. 11, a current of electricity through the galvanometer was produced; but if their place was a little shifted, as in fig. 12, a current in the contrary direction resulted; the fact being, that in the first instance the galvanometer indicated the difference between a strong current through A and a weak one through B, and in the second, of a weak current through A and a strong one through B (92.), and therefore produced opposite deflections.
96. So also when the two conductors were equidistant from the magnetic poles, as in fig. 13, no current at the galvanometer was perceived, whichever way the disc was rotated, beyond what was momentarily produced by irregularity of contact; because equal currents in the same direction tended to pass into both. But when the two conductors were connected with one wire, and the axis with the other wire, (fig. 14,) then the galvanometer showed a current according with the direction of rotation (91.); both conductors now acting consentaneously, and as a single conductor did before (88.).
97. All these effects could be obtained when only one of the poles of the magnet was brought near to the plate; they were of the same kind as to direction, &c., but by no means so powerful.