866. The hydrogen gas was next transferred to a water-trough and measured; it amounted to 12.5 cubic inches, the temperature being 52 deg., and the barometer 29.2 inches. This quantity, corrected for temperature, pressure, and moisture, becomes 12.15453 cubic inches of dry hydrogen at mean temperature and pressure; which, increased by one half for the oxygen that must have gone to the anode, i.e. to the zinc, gives 18.232 cubic inches as the quantity of oxygen and hydrogen evolved from the water decomposed by the electric current. According to the estimate of the weight of the mixed gas before adopted (791.), this volume is equal to 2.3535544 grains, which therefore is the weight of water decomposed; and this quantity is to 8.45, the quantity of zinc oxidized, as 9 is to 32.31. Now taking 9 as the equivalent number of water, the number 32.5 is given as the equivalent number of zinc; a coincidence sufficiently near to show, what indeed could not but happen, that for an equivalent of zinc oxidized an equivalent of water must be decomposed[A].
[A] The experiment was repeated several times with the same results.
867. But let us observe how the water is decomposed. It is electrolyzed, i.e. is decomposed voltaically, and not in the ordinary manner (as to appearance) of chemical decompositions; for the oxygen appears at the anode and the hydrogen at the cathode of the body under decomposition, and these were in many parts of the experiment above an inch asunder. Again, the ordinary chemical affinity was not enough under the circumstances to effect the decomposition of the water, as was abundantly proved by the inaction on plate B; the voltaic current was essential. And to prevent any idea that the chemical affinity was almost sufficient to decompose the water, and that a smaller current of electricity might, under the circumstances, cause the hydrogen to pass to the cathode, I need only refer to the results which I have given (807. 813.) to shew that the chemical action at the electrodes has not the slightest influence over the quantities of water or other substances decomposed between them, but that they are entirely dependent upon the quantity of electricity which passes.
868. What, then, follows as a necessary consequence of the whole experiment? Why, this: that the chemical action upon 32.31 parts, or one equivalent of zinc, in this simple voltaic circle, was able to evolve such quantity of electricity in the form of a current, as, passing through water, should decompose 9 parts, or one equivalent of that substance: and considering the definite relations of electricity as developed in the preceding parts of the present paper, the results prove that the quantity of electricity which, being naturally associated with the particles of matter, gives them their combining power, is able, when thrown into a current, to separate those particles from their state of combination; or, in other words, that the electricity which decomposes, and that which is evolved by the decomposition of a certain quantity of matter, are alike.