628. A third and very important consideration in favour of the mutual action of gases under these circumstances is their perfect miscibility. If fluid bodies capable of combining together are also capable of mixture, they do combine when they are mingled, not waiting for any other determining circumstance; but if two such gases as oxygen and hydrogen are put together, though they are elements having such powerful affinity as to unite naturally under a thousand different circumstances, they do not combine by mere mixture. Still it is evident that, from their perfect association, the particles are in the most favourable state possible for combination upon the supervention of any determining cause, such either as the negative action of the platina in suppressing or annihilating, as it were, their elasticity on its side; or the positive action of the metal in condensing them against its surface by an attractive force; or the influence of both together.
629. Although there are not many distinct cases of combination under the influence of forces external to the combining particles, yet there are sufficient to remove any difficulty which might arise on that ground. Sir James Hull found carbonic acid and lime to remain combined under pressure at temperatures at which they would not have remained combined if the pressure had been removed; and I have had occasion to observe a case of direct combination in chlorine[A], which being compressed at common temperatures will combine with water, and form a definite crystalline hydrate, incapable either of being formed or of existing if that pressure be removed.
[A] Philosophical Transactions, 1823, p. 161.
630. The course of events when platina acts upon, and combines oxygen and hydrogen, may be stated, according to these principles, as follows. From the influence of the circumstances mentioned (619. &c.), i.e. the deficiency of elastic power and the attraction of the metal for the gases, the latter, when they are in association with the former, are so far condensed as to be brought within the action of their mutual affinities at the existing temperature; the deficiency of elastic power, not merely subjecting them more closely to the attractive influence of the metal, but also bringing them into a more favourable state for union, by abstracting a part of that power (upon which depends their elasticity,) which elsewhere in the mass of gases is opposing their combination. The consequence of their combination is the production of the vapour of water and an elevation of temperature. But as the attraction of the platina for the water formed is not greater than for the gases, if so great, (for the metal is scarcely hygrometric,) the vapour is quickly diffused through the remaining gases; fresh portions of this latter, therefore, come into juxtaposition with the metal, combine, and the fresh vapour formed is also diffused, allowing new portions of gas to be acted upon. In this way the process advances, but is accelerated by the evolution of heat, which is known by experiment to facilitate the combination in proportion to its intensity, and the temperature is thus gradually exalted until ignition results.