[Illustration]
Then AK being an incident ray, and KB its refraction within the medium, it needs must be, according to the law of refraction which was known to Mr. Des Cartes, that the sine of the angle ZKA should be to the sine of the angle HKB as 3 to 2, supposing that this is the proportion of the refraction of glass; or rather, that the sine of the angle KGL should have this same ratio to the sine of the angle GKQ, considering KG, GL, KQ as straight lines because of their smallness. But these sines are the lines KL and GQ, if GK is taken as the radius of the circle. Then LK ought to be to GQ as 3 to 2; and in the same ratio MG to CR, NC to FS, OF to DT. Then also the sum of all the antecedents to all the consequents would be as 3 to 2. Now by prolonging the arc DO until it meets AK at X, KX is the sum of the antecedents. And by prolonging the arc KQ till it meets AD at Y, the sum of the consequents is DY. Then KX ought to be to DY as 3 to 2. Whence it would appear that the curve KDE was of such a nature that having drawn from some point which had been assumed, such as K, the straight lines KA, KB, the excess by which AK surpasses AD should be to the excess of DB over KB, as 3 to 2. For it can similarly be demonstrated, by taking any other point in the curve, such as G, that the excess of AG over AD, namely VG, is to the excess of BD over DG, namely DP, in this same ratio of 3 to 2. And following this principle Mr. Des Cartes constructed these curves in his Geometric; and he easily recognized that in the case of parallel rays, these curves became Hyperbolas and Ellipses.
Let us now return to our method and let us see how it leads without difficulty to the finding of the curves which one side of the glass requires when the other side is of a given figure; a figure not only plane or spherical, or made by one of the conic sections (which is the restriction with which Des Cartes proposed this problem, leaving the solution to those who should come after him) but generally any figure whatever: that is to say, one made by the revolution of any given curved line to which one must merely know how to draw straight lines as tangents.
Let the given figure be that made by the revolution of some curve such as AK about the axis AV, and that this side of the glass receives rays coming from the point L. Furthermore, let the thickness AB of the middle of the glass be given, and the point F at which one desires the rays to be all perfectly reunited, whatever be the first refraction occurring at the surface AK.
I say that for this the sole requirement is that the outline BDK which constitutes the other surface shall be such that the path of the light from the point L to the surface AK, and from thence to the surface BDK, and from thence to the point F, shall be traversed everywhere in equal times, and in each case in a time equal to that which the light employs, to pass along the straight line LF of which the part AB is within the glass.