Treatise on Light eBook

This eBook from the Gutenberg Project consists of approximately 129 pages of information about Treatise on Light.

Treatise on Light eBook

This eBook from the Gutenberg Project consists of approximately 129 pages of information about Treatise on Light.

Again, if one supposes the point B to be infinitely distant, in lieu of our first oval we shall find that CDE is a true Hyperbola; which will make those rays become parallel which come from the point A. And in consequence also those which are parallel within the transparent body will be collected outside at the point A. Now it must be remarked that CX and KS become straight lines perpendicular to BA, because they represent arcs of circles the centre of which is infinitely distant.  And the intersection of the perpendicular CX with the arc FC will give the point C, one of those through which the curve ought to pass.  And this operates so that all the parts of the wave of light DN, coming to meet the surface KDE, will advance thence along parallels to KS and will arrive at this straight line at the same time; of which the proof is again the same as that which served for the first oval.  Besides one finds by a calculation as easy as the preceding one, that CDE is here a hyperbola of which the axis DO is 4/5 of AD, and the parameter equal to AD.  Whence it is easily proved that DO is to the distance between the foci as 3 to 2.

[Illustration]

These are the two cases in which Conic sections serve for refraction, and are the same which are explained, in his Dioptrique, by Des Cartes, who first found out the use of these lines in relation to refraction, as also that of the Ovals the first of which we have already set forth.  The second oval is that which serves for rays that tend to a given point; in which oval, if the apex of the surface which receives the rays is D, it will happen that the other apex will be situated between B and A, or beyond A, according as the ratio of AD to DB is given of greater or lesser value.  And in this latter case it is the same as that which Des Cartes calls his 3rd oval.

Now the finding and construction of this second oval is the same as that of the first, and the demonstration of its effect likewise.  But it is worthy of remark that in one case this oval becomes a perfect circle, namely when the ratio of AD to DB is the same as the ratio of the refractions, here as 3 to 2, as I observed a long time ago.  The 4th oval, serving only for impossible reflexions, there is no need to set it forth.

[Illustration]

As for the manner in which Mr. Des Cartes discovered these lines, since he has given no explanation of it, nor any one else since that I know of, I will say here, in passing, what it seems to me it must have been.  Let it be proposed to find the surface generated by the revolution of the curve KDE, which, receiving the incident rays coming to it from the point A, shall deviate them toward the point B. Then considering this other curve as already known, and that its apex D is in the straight line AB, let us divide it up into an infinitude of small pieces by the points G, C, F; and having drawn from each of these points, straight lines towards A to represent the incident rays, and other straight lines towards B, let there also be described with centre A the arcs GL, CM, FN, DO, cutting the rays that come from A at L, M, N, O; and from the points K, G, C, F, let there be described the arcs KQ, GR, CS, FT cutting the rays towards B at Q, R, S, T; and let us suppose that the straight line HKZ cuts the curve at K at right-angles.

Copyrights
Project Gutenberg
Treatise on Light from Project Gutenberg. Public domain.