Treatise on Light eBook

This eBook from the Gutenberg Project consists of approximately 129 pages of information about Treatise on Light.

Treatise on Light eBook

This eBook from the Gutenberg Project consists of approximately 129 pages of information about Treatise on Light.
to the Ellipse QG_q_ at Q; and if one conceives a plane passing through KS and touching the spheroid, the point of contact will necessarily be in the Ellipse QM_q_, because this plane through KS, as well as the plane which touches the spheroid at the point M, are parallel to QX, the tangent of the spheroid:  for this consequence will be demonstrated at the end of this Treatise.  Let this point of contact be at I, then making KC, QC, DC proportionals, draw DI parallel to CM; also join CI.  I say that CI will be the required refraction of the ray RC.  This will be manifest if, in considering CO, which is perpendicular to the ray RC, as a portion of the wave of light, we can demonstrate that the continuation of its piece C will be found in the crystal at I, when O has arrived at K.

38.  Now as in the Chapter on Reflexion, in demonstrating that the incident and reflected rays are always in the same plane perpendicular to the reflecting surface, we considered the breadth of the wave of light, so, similarly, we must here consider the breadth of the wave CO in the diameter G_g_.  Taking then the breadth C_c_ on the side toward the angle E, let the parallelogram CO_oc_ be taken as a portion of a wave, and let us complete the parallelograms CK_kc_, CI_ic_, Kl_ik_, OK_ko_.  In the time then that the line O_o_ arrives at the surface of the crystal at K_k_, all the points of the wave CO_oc_ will have arrived at the rectangle K_c_ along lines parallel to OK; and from the points of their incidences there will originate, beyond that, in the crystal partial hemi-spheroids, similar to the hemi-spheroid QM_q_, and similarly disposed.  These hemi-spheroids will necessarily all touch the plane of the parallelogram KI_ik_ at the same instant that O_o_ has reached K_k_.  Which is easy to comprehend, since, of these hemi-spheroids, all those which have their centres along the line CK, touch this plane in the line KI (for this is to be shown in the same way as we have demonstrated the refraction of the oblique ray in the principal section through EF) and all those which have their centres in the line C_c_ will touch the same plane KI in the line I_i_; all these being similar to the hemi-spheroid QM_q_.  Since then the parallelogram K_i_ is that which touches all these spheroids, this same parallelogram will be precisely the continuation of the wave CO_oc_ in the crystal, when O_o_ has arrived at K_k_, because it forms the termination of the movement and because of the quantity of movement which occurs more there than anywhere else:  and thus it appears that the piece C of the wave CO_oc_ has its continuation at I; that is to say, that the ray RC is refracted as CI.

Copyrights
Project Gutenberg
Treatise on Light from Project Gutenberg. Public domain.