The Story of Alchemy and the Beginnings of Chemistry eBook

M. M. Pattison Muir
This eBook from the Gutenberg Project consists of approximately 171 pages of information about The Story of Alchemy and the Beginnings of Chemistry.

The Story of Alchemy and the Beginnings of Chemistry eBook

M. M. Pattison Muir
This eBook from the Gutenberg Project consists of approximately 171 pages of information about The Story of Alchemy and the Beginnings of Chemistry.

We have seen, in former chapters, the extreme haziness of the alchemical views of composition, and the connexions between composition and properties.  Although Boyle[7] had stated very lucidly what he meant by the composition of a definite substance, about a century before Lavoisier’s work on combustion, nevertheless the views of chemists concerning composition remained very vague and incapable of definite expression, until the experimental investigations of Lavoisier enabled him to form a clear mental picture of chemical changes as interactions between definite quantities of distinct substances.

[7] Boyle said, in 1689, “I mean by elements ... certain primitive and simple, or perfectly unmixed bodies; which not being made of any other bodies, or of one another, are the ingredients of which all those called perfectly mixt bodies are immediately compounded, and into which they are ultimately resolved.”

Let us consider some of the work of Lavoisier in this direction.  I select his experimental examination of the interactions of metals and acids.

Many experimenters had noticed that gases (or airs, as they were called up till near the end of the 18th century) are generally produced when metals are dissolving in acids.  Most of those who noticed this said that the gases came from the dissolving metals; Lavoisier said they were produced by the decomposition of the acids.  In order to study the interaction of nitric acid and mercury, Lavoisier caused a weighed quantity of the metal to react with a weighed quantity of the acid, and collected the gas which was produced; when all the metal had dissolved, he evaporated the liquid until a white solid was obtained; he heated this solid until it was changed to the red substance called, at that time, red precipitate, and collected the gas produced.  Finally, Lavoisier strongly heated the red precipitate; it changed to a gas, which he collected, and mercury, which he weighed.

The weight of the mercury obtained by Lavoisier at the end of this series of changes was the same, less a few grains, as the weight of the mercury which he had caused to react with the nitric acid.  The gas obtained during the solution of the metal in the acid, and during the decomposition of the white solid by heat, was the same as a gas which had been prepared by Priestley and called by him nitrous air; and the gas obtained by heating the red precipitate was found to be oxygen.  Lavoisier then mixed measured volumes of oxygen and “nitrous air,” standing over water; a red gas was formed, and dissolved in the water, and Lavoisier proved that the water now contained nitric acid.

The conclusions regarding the composition of nitric acid drawn by Lavoisier from these experiments was, that “nitric acid is nothing else than nitrous air, combined with almost its own volume of the purest part of atmospheric air, and a considerable quantity of water.”

Copyrights
Project Gutenberg
The Story of Alchemy and the Beginnings of Chemistry from Project Gutenberg. Public domain.