The important part played by these ultra-red rays in Nature may be thus illustrated: I remove the iodine filter, and concentrate the total beam upon a test tube containing water. It immediately begins to splutter, and in a minute or two it boils. What boils it? Placing the alum solution in front of the lamp, the boiling instantly ceases. Now, the alum is pervious to all the luminous rays; hence it cannot be these rays that caused the boiling. I now introduce the iodine, and remove the alum: vigorous ebullition immediately recommences at the invisible focus. So that we here fix upon the invisible ultra-red rays the heating of the water.
We are thus enabled to understand the momentous part played by these rays in Nature. It is to them that we owe the warming and the consequent evaporation of the tropical ocean; it is to them, therefore, that we owe our rains and snows. They are absorbed close to the surface of the ocean, and warm the superficial water, while the luminous rays plunge to great depths without producing any sensible effect. But we can proceed further than this. Here is a large flask containing a freezing mixture, which has so chilled the flask, that the aqueous vapour of the air of this room has been condensed and frozen upon it to a white fur. Introducing the alum-cell, and placing the coating of hoar-frost at the intensely luminous focus of the electric lamp, not a spicula of the dazzling frost is melted. Introducing the iodine-cell, and removing the alum, a broad space of the frozen coating is instantly melted away. Hence we infer that the snow and ice, which feed the Rhone, the Rhine, and other rivers with glaciers for their sources, are released from their imprisonment upon the mountains by the invisible ultra-red rays of the sun.
Sec. 6. Identity of Light and Radiant Heat. Reflection from Plane and Curved Surfaces. Total Reflection of Heat.
The growth of science is organic. That which today is an end becomes to-morrow a means to a remoter end. Every new discovery in science is immediately made the basis of other discoveries, or of new methods of investigation. Thus about fifty years ago OErsted, of Copenhagen, discovered the deflection of a magnetic needle by an electric current; and about the same time Thomas Seebeck, of Berlin, discovered thermoelectricity. These great discoveries were soon afterwards turned to account, by Nobili and Melloni, in the construction of an instrument which has vastly augmented our knowledge of radiant heat. This instrument, which is called a thermo-electric pile, or more briefly a thermo-pile, consists of thin bars of bismuth and antimony, soldered alternately together at their ends, but separated from each other elsewhere. From the ends of this ‘thermo-pile’ wires pass to a galvanometer, which consists of a coil of covered wire, within and above which are suspended two magnetic needles, joined to a rigid system, and carefully defended from currents of air.