The most familiar illustration of the interference of sound-waves is furnished by the beats produced by two musical sounds slightly out of unison. When two tuning-forks in perfect unison are agitated together the two sounds flow without roughness, as if they were but one. But, by attaching with wax to one of the forks a little weight, we cause it to vibrate more slowly than its neighbour. Suppose that one of them performs 101 vibrations in the time required by the other to perform 100, and suppose that at starting the condensations and rarefactions of both forks coincide. At the 101st vibration of the quicker fork they will again coincide, that fork at this point having gained one whole vibration, or one whole wavelength, upon the other. But a little reflection will make it clear that, at the 50th vibration, the two forks condensation where the other tends to produce a rarefaction; by the united action of the two forks, therefore, the sound is quenched, and we have a pause of silence. This occurs where one fork has gained half a wavelength upon the other. At the 101st vibration, as already stated, we have coincidence, and, therefore, augmented sound; at the 150th vibration we have again a quenching of the sound. Here the one fork is three half-waves in advance of the other. In general terms, the waves conspire when the one series is an even number of half-wave lengths, and they destroy each other when the one series is an odd number of half-wave lengths in advance of the other. With two forks so circumstanced, we obtain those intermittent shocks of sound separated by pauses of silence, to which we give the name of beats. By a suitable arrangement, moreover, it is possible to make one sound wholly extinguish another. Along four distinct lines, for example, the vibrations of the two prongs of a tuning-fork completely blot each other out.[12]