Scientific American Supplement, No. 484, April 11, 1885 eBook

This eBook from the Gutenberg Project consists of approximately 125 pages of information about Scientific American Supplement, No. 484, April 11, 1885.

Scientific American Supplement, No. 484, April 11, 1885 eBook

This eBook from the Gutenberg Project consists of approximately 125 pages of information about Scientific American Supplement, No. 484, April 11, 1885.

The success of the steam method and the fight necessary to perfect it to the utmost absorbed the energy of most able engineers—­Beighton, John Smeaton—­accomplishing much in applying and perfecting it before the appearance of James Watt upon the scene.

It is interesting to note that in England alone over 2,000 horse power of Newcomen engines were at work before Watt commenced his series of magnificent inventions; he commenced experimenting on a Newcomen engine model in 1759 at Glasgow University, and in 1774 came to Birmingham, entered into partnership with Boulton, and 1781 we find his beautiful double acting beam condensing engine in successful work.

From that time until now the steam engine has steadily advanced, increasing in economy of fuel from 10 lb. of coal per horse power per hour to about 13/4 lb. per horse power per hour, which is the best result of to-day’s steam engine practice.  This result, according to the highest authorities, is so near to the theoretical result possible from a steam engine that further improvement cannot now be looked for.  Simultaneously with the development of the steam engine, inventors continued to struggle with the direct acting combustion or gas engine, often without any definite understanding of why they should attempt such apparent impossibilities, but always by their experiments and repeated failures increasing knowledge, and forming a firm road upon which those following them traveled to success.

In 1791 John Barber obtained a patent for an engine producing inflammable gas, mixing it with air, igniting it, and allowing the current so produced to impinge upon a reaction wheel, producing motion similar to the well known Aelopile, which I have at work upon the table.  About this time, Murdoch (Jas. Watt’s assistant at Birmingham) was busy introducing coal gas into use for lighting; in 1792 Boulton and Watt’s works were lighted up with coal gas.  From this time many gas engines were proposed, and the more impracticable combustion of gunpowder received less attention.

In 1794 Thomas Mead obtained a patent for an engine using the internal combustion of gas; the description is not a clear one, his ideas seem confused.

In the same year Robert Street obtained a patent for an engine which is not unlike some now in use.  The bottom of a cylinder, containing a piston, is heated by a fire, a few drops of spirits of turpentine are introduced and evaporated by the heat, the piston is drawn up, and air entering mixes with the inflammable vapor.  A light is applied at a touch hole, and the explosion drives up the piston, which, working on a lever, forces down the piston of a pump for pumping water.  Robt.  Street adds to his description a note:  “The quantity of spirits of tar or turpentine to be made use of is always proportional to the confined space, in general about 10 drops to a cubic foot.”  This engine is quite a workable one, although the arrangements described are very crude.

Copyrights
Project Gutenberg
Scientific American Supplement, No. 484, April 11, 1885 from Project Gutenberg. Public domain.