The other forms of velocity anemometer may be described as belonging to the windmill type. In the Robinson anemometer the axis of rotation is vertical, but with this subdivision the axis of rotation must be parallel to the direction of the wind and therefore horizontal. Furthermore, since the wind varies in direction and the axis has to follow its changes, a wind vane or some other contrivance to fulfil the same purpose must be employed. This type of instrument is very little used in England, but seems to be more in favour in France. In cases where the direction of the air motion is always the same, as in the ventilating shafts of mines and buildings for instance, these anemometers, known, however, as air meters, are employed, and give most satisfactory results.
Anemometers which measure the pressure may be divided into the plate and tube classes, but the former term must be taken as including a good many miscellaneous forms. The simplest type of this form consists of a flat plate, which is usually square or circular, while a wind vane keeps this exposed normally to the wind, and the pressure of the wind on its face is balanced by a spring. The distortion of the spring determines the actual force which the wind is exerting on the plate, and this is either read off on a suitable gauge, or leaves a record in the ordinary way by means of a pen writing on a sheet of paper moved by clockwork. Instruments of this kind have been in use for a long series of years, and have recorded pressures up to and even exceeding 60 lb per sq. ft., but it is now fairly certain that these high values are erroneous, and due, not to the wind, but to faulty design of the anemometer.
The fact is that the wind is continually varying in force, and while the ordinary pressure plate is admirably adapted for measuring the force of a steady and uniform wind, it is entirely unsuitable for following the rapid fluctuations of the natural wind. To make matters worse, the pen which records the motion of the plate is often connected with it by an extensive system of chains and levers. A violent gust strikes the plate, which is driven back and carried by its own momentum far past the position in which a steady wind of the same force would place it; by the time the motion has reached the pen it has been greatly exaggerated by the springiness of the connexion, and not only is the plate itself driven too far back, but also its position is wrongly recorded by the pen; the combined errors act the same way, and more than double the real maximum pressure may be indicated on the chart.
A modification of the ordinary pressure-plate has recently been designed. In this arrangement a catch is provided so that the plate being once driven back by the wind cannot return until released by hand; but the catch does not prevent the plate being driven back farther by a gust stronger than the last one that moved it. Examples of these plates are erected on the west coast of England, where in the winter fierce gales often occur; a pressure of 30 lb per sq. ft. has not been shown by them, and instances exceeding 20 lb are extremely rare.