[Note 44: See Trans. of the Edin. Royal Society.]
It must not be alleged that nature may operate in the mineral regions, as she does here upon the surface in the case of Giezer. Such an argument as this, however sound it may be in general, will not apply to the subject of which we treat at present. There is no question about the limiting the powers of nature; we are only considering nature as operating in a certain determined manner, viz. by water acting simply upon the loose materials of the land deposited at the bottom of the sea, and accumulated in regular strata, one upon another, to the most enormous depth or thickness. This is the situation and condition of things in which nature is to operate; and we are to find the means of consolidating those strata, and concreting every species of substance in almost every possible composition, according to some known physical principle. Here is an operation which is limited; for, we must reason strictly, according to the laws of nature, in the case which we have under consideration; and we cannot suppose nature as ever transgressing those laws.
It is acknowledged, that, by means sometimes of an aeriform, sometimes of an alkaline, perhaps also of an acid substance, calcareous matter is dissolved in the earth, and certain metallic substances, such as lead and iron. This solution also, upon particular occasions, (where the proper conditions for separating the solvent from the dissolved substance exist), forms certain concretions; these are sometimes a mere incrustation, as in the case of the siliceous incrustation of Giezer, sometimes again in a crystallised or sparry form, as in the case of stalactical concretions. But here is no question of those cases where the proper conditions may be found; first, of dissolving the substance which is afterwards to be concreted; secondly, of separating the menstruum from the dissolved substance; and, lastly, of removing the fluid deprived of its solution, and of supplying a new solution in its room; the question is, how far those concretions are formed where those conditions do not take place. Now, this last case is that of almost all mineral concretions.
It must not be here alleged that certain concretions have been found in mines posterior to these having been worked by man; consequently, that those concretions have been formed by nothing but the infiltration of water. In those cases, where such concretions are truly found, I am persuaded that all the conditions proper to that operation will also be found; and it is only, I believe, in those cases where such proper conditions may be found, that this aqueous concretion ever appears. Now, if we shall except calcareous stalactite, and the bog ore of iron, How seldom is it that any appearance of those aqueous mineral concretion ever is found? Those very few cases in which they are found, afford the strongest proof against these being operations general to the globe, or proper mineral concretions; because it is only where all the necessary conditions conspire in each contributing its part, that the effect is accomplished; and this is a thing which cannot possibly take place in the aquiform strata below the surface of the sea. But, without attending to this clear distinction of things perfectly different, naturalists are apt to see false analogies, and thus in generalising to form the most erroneous theories.