The law of Faraday expresses the relation between current strength and the quantities of the decomposition products which, under constant conditions, appear at the electrodes, namely, that a given quantity of electricity, acting for a given time, causes the separation of chemically equivalent quantities of the various elements or radicals. For example, since 107.94 grams of silver is equivalent to 1.008 grams of hydrogen, and that in turn to 8 grams of oxygen, or 31.78 grams of copper, the quantity of electricity which will cause the deposit of 107.94 grams of silver in a given time will also separate the weights just indicated of the other substances. Experiments show that a current of one ampere passing for one second, i.e., a coulomb of electricity, causes the deposition of 0.001118 gram of silver from a normal solution of a silver salt. The number of coulombs required to deposit 107.94 grams is 107.94/0.001118 or 96,550 and the same number of coulombs will also cause the separation of 1.008 grams of hydrogen, 8 grams of oxygen or 31.78 grams of copper. While it might at first appear that Faraday’s law could thus be used as a basis for the calculation of the time required for the deposition of a given quantity of an electrolyte from solution, it must be remembered that the law expresses what occurs when the concentration of the ions in the solution is kept constant, as, for example, when the anode in a silver salt solution is a plate of metallic silver. Under the conditions of electro-analysis the concentration of the ions is constantly diminishing as deposition proceeds and the time actually required for complete deposition of a given weight of material by a current of constant strength is, therefore, greater than that calculated on the basis of the law as stated above.
The electrodes employed in electro-analysis are almost exclusively of platinum, since that metal alone satisfactorily resists chemical action of the electrolytes, and can be dried and weighed without change in composition. The platinum electrodes may be used in the form of dishes, foil or gauze. The last, on account of the ease of circulation of the electrolyte, its relatively large surface in proportion to its weight and the readiness with which it can be washed and dried, is generally preferred.
Many devices have been described by the use of which the electrode upon which deposition occurs can be mechanically rotated. This has an effect parallel to that of greatly increasing the electrode surface and also provides a most efficient means of stirring the solution. With such an apparatus the amperage may be increased to 5 or even 10 amperes and depositions completed with great rapidity and accuracy. It is desirable, whenever practicable, to provide a rotating or stirring device, since, for example, the time consumed in the deposition of the amount of copper usually found in analysis may be reduced from the 20 to 24 hours required with stationary electrodes, and unstirred solutions, to about one half hour.