In this connection it may be well to take one of the scales for quality of products and outline the steps to be followed in assigning scores, making tabulations, and finding the medians of distributions of scores.
When the Hillegas scale is employed in measuring the quality of English composition, it will be advisable to assign to each composition the score of that sample on the scale to which it is nearest in merit or quality. While some individuals may feel able to assign values intermediate to those appearing on the Hillegas scale, the majority of those persons who use this scale will not thereby obtain a more accurate result, and the assignment of such intermediate values will make it extremely difficult for any other person to make accurate use of the results. To be exactly comparable, values should be assigned in exactly the same manner.
The best result will probably be obtained by having each composition rated several times, and if possible, by a number of different judges, the paper being given each time that value on the Hillegas scale to which it seems nearest in quality. The final mark for the paper should be the median score or step (not the median point or the average point) of all the scores assigned. For example, if a paper is rated five times, once as in step number five (5.85), twice as in step number six (6.75), and twice as in step number seven (7.72), it should be given a final mark indicating that it is a number six (6.75) paper.
After each composition has been assigned a final mark indicating to what sample on the Hillegas scale it is most nearly equal in quality, proceed as follows:
Make a distribution of the final marks given to the individual papers, showing how many papers were assigned to the zero step on the scale, how many to step number one, how many to step number two, and so on for each step of the scale. We may take as an example the distribution of scores made by the pupils of the eighth grade at Butte, Montana, in May, 1914.
No. of papers 1 9 32 39 43 22 6 2 Rated at 0 1 2 3 4 5 6 7 8 9
All together there were 154 papers from the eighth grade, so that if they were arranged in order according to their merit we might begin at the poorest and count through 77 of them (n/2 = 154/2 = 77) to find the median point, which would lie between the 77th and the 78th in quality. If we begin with the 1 composition rated at 0 and count up through the 9 rated at 1 and the 32 rated at 2 in the above distribution, we shall have counted 42. In order to count out 77 cases, then, it will be necessary to count out 35 of the 39 cases rated at 3.