The question at once suggests itself, How was even this thin crust formed? what should cause any solid envelope, however slight and filmy when compared to the whole bulk of the globe, to form upon the surface of such a molten mass? At this point of the investigation the geologist must appeal to the astronomer; for in this vague and nebulous border-land, where the very rocks lose their outlines and flow into each other, where matter exists only in its essential elements, not yet specialized into definite forms and substances,—there the two sciences meet. Astronomy shows us our planet thrown off from the central mass of which it once formed a part, to move henceforth in an independent orbit of its own. That orbit, it tells us, passed through celestial spaces cold enough to chill this heated globe, and of course to consolidate it externally. We know, from the action of similar causes on a smaller scale and on comparatively insignificant objects immediately about us, what must have been the effect of this cooling process upon the heated mass of the globe. All substances when heated occupy more space than they do when cold. Water, which expands when freezing, is the only exception to this rule. The first effect of cooling the surface of our planet must have been to solidify it, and thus to form a film or crust over it. That crust would shrink as the cooling process went on; in consequence of the shrinking, wrinkles and folds would arise upon it, and here and there, where the tension was too great, cracks and fissures would be produced. In proportion as the surface cooled, the masses within would be affected by the change of temperature outside of them, and would consolidate internally also, the crust gradually thickening by this process.