[Footnote 1: Republished in Sir W. Thomson’s “Mathematical and Physical Papers,” vol. i., article xlix., p. 381. ]
[Footnote 2: That this is a mere hypothesis has been scarcely remarked by the founders themselves, nor by almost any writer on the kinetic theory of gases. No one has yet examined the question, What is the condition as regards average distribution of kinetic energy, which is ultimately fulfilled by two portions of gaseous matter, separated by a thin elastic septum which absolutely prevents interdiffusion of matter, while it allows interchange of kinetic energy by collisions against itself? Indeed, I do not know but, that the present is the very first statement which has ever been published of this condition of the problem of equal temperatures between two gaseous masses.]
Think of the thing thus. Imagine a great multitude of particles inclosed by a boundary which may be pushed inward in any part all round at pleasure. Now station an engineer corps of Maxwell’s army of sorting demons all round the inclosure, with orders to push in the boundary diligently everywhere, when none of the besieged troops are near, and to do nothing when any of them are seen approaching, and until after they have turned again inward. The result will be that, with exactly the same sum of kinetic and potential energies of the same inclosed multitude of particles, the throng has been caused to be denser. Now Joule’s and my own old experiments on the efflux of air prove that if the crowd be common air, or oxygen, or nitrogen, or carbonic acid, the temperature is a little higher in the denser than in the rarer condition when the energies are the same. By the hypothesis, equality of temperature between two different gases or two portions of the same gas at different densities means equality of kinetic energies in the same number of molecules of the two. From our observations proving the temperature to be higher, it therefore follows that the potential energy is smaller in the condensed crowd. This—always, however, under protest as to the temperature hypothesis—proves some degree of attraction among the molecules, but it does not prove ultimate attraction between two molecules in collision, or at distances much less than the average mutual distance of nearest neighbors in the multitude. The collisional force might be repulsive, as generally supposed hitherto, and yet attraction might predominate in the whole reckoning of difference between the intrinsic potential energies of the more dense and less dense multitudes.
It is however remarkable that the explanation of the propagation of sound through gases, and even of the positive fluid pressure of a gas against the sides of the containing vessel, according to the kinetic theory of gases, is quite independent of the question whether the ultimate collisional force is attractive or repulsive. Of course it must be understood that, if it is attractive, the particles must, be