It is not in the bounds of present possibility to get outside our atmosphere and measure by the plan I have described to you the different illuminating values of the different rays, but this we can do: First, we can measure these values at different altitudes of the sun, and this means measuring the effect on each ray after passing through different thicknesses of the atmosphere, either at different times of day or at different times of the year, about the same hour. Second, by taking the instrument up to some such elevation as that to which Langley took his bolometer at Mount Whitney, and so to leave the densest part of the atmosphere below us.
[Illustration: FIG. 2.—RELATIVE LUMINOSITIES.]
Now, I have adopted both these plans. For more than a year I have taken measurements of sunlight in my laboratory at South Kensington, and I have also taken the instrument up to 8,000 feet high in the Alps, and made observations there, and with a result which is satisfactory in that both sets of observations show that the law which holds with artificially turbid media is under ordinary circumstances obeyed by sunlight in passing through our air: which is, you will remember, that more of the red is transmitted than of the violet, the amount of each depending on the wave length. The luminosity of the spectrum observed at the Riffel I have used as my standard luminosity, and compared all others with it. The result for four days you see in the diagram.
I have diagrammatically shown the amount of different colors which penetrated on the same days, taking the Riffel as ten. It will be seen that on December 23 we have really very little violet and less than half the green, although we have four fifths of the red.