Scientific American Supplement, No. 458, October 11, 1884 eBook

This eBook from the Gutenberg Project consists of approximately 150 pages of information about Scientific American Supplement, No. 458, October 11, 1884.

Scientific American Supplement, No. 458, October 11, 1884 eBook

This eBook from the Gutenberg Project consists of approximately 150 pages of information about Scientific American Supplement, No. 458, October 11, 1884.

The weight in working order is on the pony truck, 8 tons 10 cwt.; leading coupled, 12 tons 8 cwt.; driving coupled, 13 tons 5 cwt.; trailing coupled, 12 tons 15 cwt.; total, 47 tons.

The tender weighs 28 tons in full working order.  These engines take 40 loaded coal trucks or sixty empty ones, and burn 52 lb. of coal per train mile, the worst gradient being 1 in 176.  A notice of goods engines would not be complete without alluding to a steep gradient locomotive, and a good example is the engine which works the Redheugh Bank on the North-Eastern Railway.  This incline is 1,040 yards long, and rises for 570 yards 1 in 33, then for 260 yards 1 in 21.7, for 200 yards 1 in 25, and finally for 110 yards 1 in 27.  The engine, which is an all-coupled six wheel tank engine, weighs 481/2 tons in working order, it has cylinders 18 in. diameter and 24 in. stroke, and 4 ft. wheels, the boiler pressure is 160 lb., and the tractive force per lb. of mean steam pressure in the cylinders is 162 lb.  This engine will take up the incline twenty-six coal wagons, or a gross load of 218 tons, which is a very good duty indeed.

Having now passed in review the general types of engines adopted in modern English practice, the author would briefly draw attention to some points of design and some improvements effected in late years.  And first, as to the question of single or coupled engines, there is a great diversity of opinion.  Mr. Stirling conducts his traffic at a higher rate of speed, and certainly with equal punctuality, with his magnificent single 8 ft. engines, as Mr. Webb on the North-Western with coupled engines, and the economy of fuel of the former class over the latter is very remarkable; this is, no doubt, owing, as has been previously pointed out, to their ample cylinder power, which permits of the steam being worked at a high rate of expansion.  There is no doubt that if single engines can take the load they will do so more freely and at a less cost than coupled engines, burning on the average 2 lb. of coal per mile less with similar trains.  With, regard to loads, it is a question whether any express train should be made up with more than twenty-five coaches.  The Great Northern engine will take twenty-six and keep time, and the Brighton single engine has taken the five P.M. express from London Bridge to Brighton, consisting of twenty-two coaches, at a speed of forty-five miles per hour.  Of course where heavy gradients have to be surmounted, such as those on the Midland route to Scotland, coupled engines are a necessity.  Single engines are said to slip more than coupled; thus an 8 ft. single Great Northern engine running down the incline from Potter’s Bar to Wood Green with twelve coaches at the rate of sixty miles an hour was found to be making 242 revolutions per mile instead of 210; and in an experiment tried on the Midland Railway it was found that a coupled engine with ten coaches at fifty miles an hour made seventeen extra revolutions a mile, but when the side

Copyrights
Project Gutenberg
Scientific American Supplement, No. 458, October 11, 1884 from Project Gutenberg. Public domain.