Scientific American Supplement, No. 446, July 19, 1884 eBook

This eBook from the Gutenberg Project consists of approximately 133 pages of information about Scientific American Supplement, No. 446, July 19, 1884.

Scientific American Supplement, No. 446, July 19, 1884 eBook

This eBook from the Gutenberg Project consists of approximately 133 pages of information about Scientific American Supplement, No. 446, July 19, 1884.

Upon the completion of the wire to Chicago, total distance 1,050 miles, including six miles of No. 8 iron wire through the city, the maximum speed was found to be 1,200 words per minute, and to my surprise the speed was not affected by the substitution of an underground conductor for the overhead wire.

The underground conductor was a No. 16 copper wire weighing 67 pounds per mile, in a Patterson cable laid through an iron pipe.

I used 150 cells of large Fuller battery on the New York-Chicago circuit, and afterward with 200 cells in first class condition, transmitted 1,500 words, or 37,000 impulses, per minute from 49 Broadway, New York, to our test office at Thirty-ninth Street, Chicago.

The matter was always carefully counted, and the utmost care taken to obtain correct figures.

It may be mentioned as a curious fact that we not only send 1,200 words per minute through 1,050 miles of overhead wire and five miles of underground cable, but also through a second conductor in No. 2 cable back to Thirty-ninth Street, and then connected to a third underground conductor in No. 1 cable back to Chicago main office, in all about fifteen miles of underground, through which we sent 1,200 words per minute and had a splendid margin.—­Electrical World.

* * * * *

[ELECTRICAL REVIEW].

THEORY OF THE ACTION OF THE CARBON MICROPHONE—­WHAT IS IT?

A careful examination of the opinions of scientific men given in the telephone cases—­before Lord McLaren in Edinburgh and before Mr. Justice Fry in London—­leads me to the conclusion that scientific men, at least those whose opinions I shall quote, are not agreed as to what is the action of the carbon microphone.

In the Edinburgh case, Sir Frederick Bramwell said:  “The variations of the currents are effected so as to produce with remarkable fidelity the varied changes which occur, according as the carbon is compressed or relieved from compression by the gentle impacts of the air set in motion by the voice.”

“The most prominent quality of carbon is its capability, under the most minute differences of pressure, to enormously increase or decrease the resistances of the circuit.”  “That the varying pressure of the black tension-regulator (Edison’s) is sufficient to cause a change in the conducting power.”  Sir Frederick also said “he could not believe that the resistance was varied by a jolting motion; could not conceive a jolting motion producing variation and difference of pressure, and such an instrument could not be relied on, and therefore would be practically useless.”

Copyrights
Project Gutenberg
Scientific American Supplement, No. 446, July 19, 1884 from Project Gutenberg. Public domain.