Scientific American Supplement, No. 531, March 6, 1886 eBook

This eBook from the Gutenberg Project consists of approximately 131 pages of information about Scientific American Supplement, No. 531, March 6, 1886.

Scientific American Supplement, No. 531, March 6, 1886 eBook

This eBook from the Gutenberg Project consists of approximately 131 pages of information about Scientific American Supplement, No. 531, March 6, 1886.

Secondly, the nucleus of the ovule corresponds with the macrosporangium of Selaginella, through the connecting link of the conifers, where the ovule is of similar origin and position to the macrosporangium of the Lycopodiaceae.  But the formation of the macrospore or embryo-sac is simpler than the corresponding process in cryptogams.  It arises by a simple enlargement of one cell of the nucleus instead of by the division of one cell into four, each thus becoming a macrospore.  At the top of this macrospore or embryo-sac two or three germinal vesicles are formed by free cell formation, and also two or three cells called antipodal cells, since they travel to the other end of the embryo-sac; these latter represent a rudimentary prothallium.  This formation of germinal vesicles and prothallium seems very different from the formation of archegonia and prothallium in Selaginella, for instance; but the link which connects the two is in the gymnosperms, where distinct archegonia in a prothallium are formed.

Thus we see that the flowering plant is essentially the equivalent of the asexual fern, and of the sporogonium of the moss, and the pollen cell and the embryo-sac represent the two spores of the higher cryptogams, and the pollen tube and the germinal vesicles and antipodal cells are all that remain of the sexual generation, seen in the moss as a leafy plant, and in the fern as a prothallium.  Indeed, when a plant has monoecious or dioecious flowers, the distinction between the asexual and the sexual generation has practically been lost, and the spore-bearing generation has become identified with the sexual generation.

Having now described the formation of the pollen and the germinal vesicles, it only remains to show how they form the embryo.  The pollen cell forms two or three divisions, which are either permanent or soon absorbed; this, as before stated, is the rudimentary male prothallium.  Then when it lies on the stigma it develops a long tube, which passes down the style and through the micropyle of the ovule to the germinal vesicles, one of which is fertilized by what is probably an osmotic transference of nuclear matter.  The germinal vesicle now secretes a wall, divides into two parts, and while the rest of the embyro-sac fills with endosperm cells, it produces by cell division from the upper half a short row of cells termed a suspensor, and from the lower half a mass of cells constituting the embryo.  Thus while in the moss the asexual generation or sporogonium is nourished by the sexual generation or leafy plant, and while in the fern each generation is an independent structure, here in the dicotyledon, on the other hand, the asexual generation or embryo is again for a time nourished in the interior of the embryo-sac representing the sexual generation, and this again derives its nourishment from the previous asexual generation, so that as in the moss, there is again a partial parasitism of one generation on the other.

Copyrights
Project Gutenberg
Scientific American Supplement, No. 531, March 6, 1886 from Project Gutenberg. Public domain.