Stories of Inventors eBook

Russell Doubleday
This eBook from the Gutenberg Project consists of approximately 143 pages of information about Stories of Inventors.

Stories of Inventors eBook

Russell Doubleday
This eBook from the Gutenberg Project consists of approximately 143 pages of information about Stories of Inventors.

By the middle of 1898 Marconi’s wireless system was doing actual commercial service in reporting, for a Dublin newspaper, the events at a regatta at Kingstown, when about seven hundred messages were sent from a floating station to land, at a maximum distance of twenty-five miles.

It was shortly afterward, while the royal yacht was in Cowes Bay, that one hundred and fifty messages between the then Prince of Wales and his royal mother at Osborne House were exchanged, most of them of a very private nature.

One of the great objections to wireless telegraphy has been the inability to make it secret, since the ether waves circle from the centre in all directions, and any receiving apparatus within certain limits would be affected by the waves just as the station to which the message was sent would be affected by them.  To illustrate:  the waves radiating from a stone dropped into a still pool would make a dead leaf bob up and down anywhere on the pool within the circle of the waves, and so the ether waves excited the receiving apparatus of any station within the effective reach of the circle.

Of course, the use of a cipher code would secure the secrecy of a message, but Marconi was looking for a mechanical device that would make it impossible for any but the station to which the message was sent to receive it.  He finally hit upon the plan of focussing the ether waves as the rays of a searchlight are concentrated in a given direction by the use of a reflector, and though this adaptation of the searchlight principle was to a certain extent successful, much penetrating power was lost.  This plan has been abandoned for one much more ingenious and effective, based on the principle of attunement, of which more later.

It was a proud day for the young Italian when his receiver at Dover recorded the first wireless message sent across the British Channel from Boulogne in 1899—­just the letters V M and three or four words in the Morse alphabet of dots and dashes.  He had bridged that space of stormy, restless water with an invisible, intangible something that could be neither seen, felt, nor heard, and yet was stronger and surer than steel—­a connection that nothing could interrupt, that no barrier could prevent.  The first message from England to France was soon followed by one to M. Branly, the inventor of the coherer, that made the receiving of the message possible, and one to the queen of Marconi’s country.  The inventor’s march of progress was rapid after this—­stations were established at various points all around the coast of England; vessels were equipped with the apparatus so that they might talk to the mainland and to one another.  England’s great dogs of war, her battle-ships, fought an imaginary war with one another and the orders were flashed from the flagship to the fighters, and from the Admiral’s cabin to the shore, in spite of fog and great stretches of open water heaving between.

[Illustration:  The wireless telegraph station at Glace bay]

Copyrights
Project Gutenberg
Stories of Inventors from Project Gutenberg. Public domain.