A.—In all oscillating engines of any considerable size, the cover of the connecting brass, which attaches the crank pin to the connecting rod, is formed of malleable iron; and the socket also, which is cuttered to the end of the piston rod, is of malleable iron, and is formed with a T head, through which bolts pass up through the brass, to keep the cover of the brass in its place.
637. Q.—Is the piston of an oscillating engine made deeper than in common engines?
A.—It is expedient, in oscillating engines, to form the piston with a projecting rim round the edge above and below, and a corresponding recess in the cylinder cover and cylinder bottom, whereby the breadth of bearing of the solid part of the metal will be increased, and in many engines this is now done.
638. Q.—Would any difficulty be experienced in keeping the trunnions tight in a high pressure oscillating engine?
A.—It is very doubtful whether the steam trunnions of a high pressure oscillating engine will continue long tight if the packing consists of hemp; and it appears preferable to introduce a brass ring, to embrace the pipe, cut spirally, with an overlap piece to cover the cut, and packed behind with hemp.
639. Q.—How is the packing of the trunnions usually effected?
A.—The packing of the trunnions, after being plaited as hard as possible, and cut to the length to form one turn round the pipe, is dipped into boiling tallow, and is then compressed in a mould, consisting of two concentric cylinders, with a gland forced down into the annular space by three to six screws in the case of large diameters, and one central screw in the case of small diameters. Unless the trunnion packings be well compressed, they will be likely to leak air, and it is, therefore, necessary to pay particular attention to this condition. It is also very important that the trunnions be accurately fitted into their brasses by scraping, so that there may not be the smallest amount of play left upon them; for if any upward motion is permitted, it will be impossible to prevent the trunnion packings from leaking.
DIRECT ACTING SCREW ENGINE.
640. Q.—Will you describe the configuration and construction of a direct acting screw engine?
A.—I will take as an example of this species of engine, the engine constructed by Messrs. John Bourne & Co., for the screw steamer Alma, a vessel of 500 tons burden. This engine is a single steeple engine laid on its side, and in its general features it resembles the engines of the Amphion already described, only that there is one cylinder instead of two. The cylinder is of 42 inches diameter and 42 inches stroke, and the vessel has been propelled by this single engine at the rate of fourteen miles an hour.
641. Q.—Is not a single engine liable to stick upon the centre so that it cannot be started or reversed with facility?