A Catechism of the Steam Engine eBook

John Bourne
This eBook from the Gutenberg Project consists of approximately 507 pages of information about A Catechism of the Steam Engine.

A Catechism of the Steam Engine eBook

John Bourne
This eBook from the Gutenberg Project consists of approximately 507 pages of information about A Catechism of the Steam Engine.
of the train at 7-1/2 lbs. per ton, or 825 lbs. operating at the circumference of the driving wheel—­which, with 5 ft. 6 in. wheels, and 18 in. stroke, is equivalent to 4,757 lbs. upon the piston—­and taking the resistance of the blast pipe at 6 lbs. per square inch of the pistons, and the friction of the engine unloaded at 1 lb. per square inch, which, with pistons 12 in. in diameter, amount together to 1,582 lbs., and reckoning the increased friction of the engine due to the load at 1/7th of the load, as in some cases it has been found experimentally to be, though a much less proportion than this would probably be a nearer average, we have 7018.4 lbs. for the total load upon the pistons.  At 30 miles an hour the speed of the pistons will be 457.8 feet per minute, and 7018.4 lbs. multiplied by 457.8 ft. per minute, are equal to 3213023.5 lbs. raised one foot high in the minute, which, divided by 33,000, gives 97.3 horses power as the power which would draw 110 tons upon a railway at a speed of 30 miles an hour, if there were no atmospheric resistance.  The atmospheric resistance is at the rate of 12 lbs. a ton, with a load of 110 tons, equal to 1,320 lbs., moving at a speed of 30 miles an hour, which, when reduced, becomes 105.8 horses power, and this, added to 97.3, makes 203.1, instead of 200 horses power, as ascertained by a reference to the evaporative power of the boiler.  This amount of atmospheric resistance, however, exceeds the average, and in some of the experiments for ascertaining the atmospheric resistance, a part of the resistance due to the curves and irregularities of the line has been counted as part of the atmospheric resistance.

498. Q.—­Is the resistance per ton of the engine the same as the resistance per ton of the train?

A.—­No; it is more, since the engine has not merely the resistance of the atmosphere and of the wheels to encounter, but the resistance of the machinery besides.  According to Mr. Gooch’s experiments upon a train weighing 100 tons, the resistance of the engine and tender at 13.1 miles per hour was found by the indicator to be 12.38 lbs.; the resistance per ton of the train, as ascertained by the dynamometer, was at the same speed 7.58 lbs., and the average resistance of locomotive and train was 9.04 lbs.  At 20.2 miles per hour these resistances respectively became 19.0, 8.19, and 12.2 lbs.  At 441 miles per hour the resistances became 34.0, 21.10, and 25.5 lbs., and at 57.4 miles an hour they became 35.5, 17.81, and 23.8 lbs.

499. Q.—­Is it not maintained that the resistance of the atmosphere to the progress of railway trains increases as the square of the velocity?

Copyrights
Project Gutenberg
A Catechism of the Steam Engine from Project Gutenberg. Public domain.