Let us briefly investigate how it is possible both to see and to photograph the invisible. Shortly after Roentgen’s discovery, Edison, with that wonderful power of finding practical applications for nearly all discoveries, had invented the fluoroscope,—a screen covered with a peculiar chemical substance that becomes luminous when exposed to the Roentgen rays. Suppose, now, between the rays and such a screen be interposed a substance opaque to ordinary light, as, for example, the human hand. The tissues of the hand, such as the flesh and the blood, permit the rays to readily pass through them, but the bones are opaque to the rays, and, therefore, oppose their passage; consequently, the screen; instead of being uniformly illumined, will show shadows of the bones, so that, to an eye examining the screen, it will seem as though it were looking through the flesh and blood directly at the bones. In a similar manner, if a photographic plate be employed instead of the screen, a distinct photographic picture will be obtained.
Both the fluoroscope and the photographic camera have proved an invaluable aid to the surgeon, who can now look directly through the human body and examine its internal organs, and so be able to locate such foreign bodies as bullets and needles in its various parts, or make correct diagnoses of fractures or dislocations of the bones, or even examine the action of such organs as the liver and heart.
About 1886, Hertz discovered that if a small Leyden jar is discharged through a short and simple circuit, provided with a spark-gap of suitable length, a series of electro-magnetic waves are set up, which, moving through space in all directions, are capable of exciting in a similar circuit effects that can be readily recognized, although the two circuits are at fairly considerable distances apart. Here we have a simple basic experiment in wireless telegraphy, which, briefly considered, consists of means whereby oscillations or waves, set up in free space by means of disruptive discharges, are caused to traverse space and produce various effects in suitably constructed receptive devices that are operated by the waves as they impinge on them.
At first a doubt was expressed by eminent scientific men as to the practicability of successfully transmitting wireless messages through long distances, since these waves, travelling in all directions, would soon become too attenuated to produce intelligible signals; but when it was shown, from theoretical considerations, that these waves when traversing great distances are practically confined to the space between the earth’s surface and the upper rarified strata of the atmosphere, the possibility of long-distance wireless telegraphic transmission was recognized. To increase the distance, it was only necessary either to increase the energy of the waves at the transmitting station, or to increase the delicacy of the receiving instruments, or both.
It has been but a short time since both the scientific and the financial worlds were astounded by the actual transmission of intelligible wireless signals across the Atlantic, and the name of Marconi will go down to posterity as the one who first accomplished this great feat.