Principal Dawson is the last person likely to be guilty of exaggeration in this matter, and it will be well to consider what he has to say about it:—
“The rate of accumulation of coal was very slow. The climate of the period, in the northern temperate zone, was of such a character that the true conifers show rings of growth, not larger, nor much less distinct, than those of many of their modern congeners. The Sigillarioe and Calamites were not, as often supposed, composed wholly, or even principally, of lax and soft tissues, or necessarily short-lived. The former had, it is true, a very thick inner bark; but their dense woody axis, their thick and nearly imperishable outer bark, and their scanty and rigid foliage, would indicate no very rapid growth or decay. In the case of the Sigillarioe, the variations in the leaf-scars in different parts of the trunk, the intercalation of new ridges at the surface representing that of new woody wedges in the axis, the transverse marks left by the stages of upward growth, all indicate that several years must have been required for the growth of stems of moderate size. The enormous roots of these trees, and the condition of the coal-swamps, must have exempted them from the danger of being overthrown by violence. They probably fell in successive generations from natural decay; and making every allowance for other materials, we may safely assert that every foot of thickness of pure bituminous coal implies the quiet growth and fall of at least fifty generations of Sigillarioe, and therefore an undisturbed condition of forest growth enduring through many centuries. Further, there is evidence that an immense amount of loose parenchymatous tissue, and even of wood, perished by decay, and we do not know to what extent even the most durable tissues may have disappeared in this way; so that, in many coal-seams, we may have only a very small part of the vegetable matter produced.”
Undoubtedly the force of these reflections is not diminished when the bituminous coal, as in Britain, consists of accumulated spores and spore-cases, rather than of stems. But, suppose we adopt Principal Dawson’s assumption, that one foot of coal represents fifty generations of coal plants; and, further, make the moderate supposition that each generation of coal plants took ten years to come to maturity—then, each foot-thickness of coal represents five hundred years. The superimposed beds of coal in one coal-field may amount to a thickness of fifty or sixty feet, and therefore the coal alone, in that field, represents 500 x 50 = 25,000 years. But the actual coal is but an insignificant portion of the total deposit, which, as has been seen, may amount to between two and three miles of vertical thickness. Suppose it be 12,000 feet—which is 240 times the thickness of the actual coal—is there any reason why we should believe it may not have taken 240 times as long to form? I know of none.